Yangın ve Güvenlik Dergisi 222. Sayı (Nisan 2021)

Yangın ve Güvenlik / Nisan 2021 27 yanginguvenlik.com.tr 4. Cephe yüzeyinin en tehlikeli alanı alev topunun üst kısmıdır ve camdan dışarı çıkan harici alevden doğrudan etkilenir. Alev odasının içinde deneysel ve nümerik olarak elde edilen genel sıcaklık değerleri %12-%16 kadar farklıdır, pencere açıklığındaki sıcaklık değeri %16-%24 arasında daha az tahmin edilmiş ve model içindeki ısı yalıtımı ve son kat kaplama yüzeyi yanındaki sıcaklıkların her ikisi de termoka- pıllarla ölçülen sıcaklıklarından %22 fazla ve (T17, T21 veT19) termokapıllarda ölçülen sıcaklıklardan %18 az tahmin edil- miştir. Cephe ısı yalıtım sisteminin içindeki sıcaklık değerleri deneysel verileri aşmamış ve ortalama sıcaklık sapması de- ğerleri %16’ya eşit olmuştur. 6. KAYNAKLAR [1] DBN V.2.6-33:2018 Constructions of heat insulated external walls. Requirements for the designing. (2018). Kiev: “Ukrarkhbudinform” (in Ukr.) [2] Kuzyliak, V., Yakovchuk, R., & Veselivskyi, R. (2016). Fire risk of thermal insulation materials using in building industry. Fire Safety, 28, 81-87 (in Ukr.) https://journal.ldubgd.edu.ua/index. php/PB/article/view/229 [3] Yakovchuk, R., Kuzyk, A., Miller, O., & Lyn, A. (2018). Heat insulation-apparatus systems of household facade as a factor of increased fire hazard. Fire Safety, 32, 80-89 https://doi.org/1 0.32447/20786662.32.2018.12 [4] McGrattan, K., et al. (2015). Fire Dynamics Simulator User’s Guide, FDS Version 6.2.0, SVN Repository Revision: 22352, NIST Special Publication 1019, National Institute of Standards and Technology, Gaithersburg, MD USA. [5] Yakovchuk, R., Kuzyk, A., Miller, O., & Lyn, A. (2018). Heat insulation-apparatus systems of household facade as a factor of increased fire hazard. Fire Safety, (32), 80-89. https://doi. org /https://doi.org/10.32447/20786662.32.2018.12 [6] V. Dréan, R. Schillinger, G. Auguin “Fire exposed facades: Numerical modelling of the LEPIR2 testing facility” MATEC Web of Conferences 46 03001 (2016) DOI: 10.1051/ matecconf/20164603001 [7] Guan H. Y., Kwok K. Y. Computational Fluid Dynamics in Fire Engineering. Theory, Modeling and Practice, Butterworth- Heinemann, Elsevier Science and Technology, ISBN: 978-0- 7506-8589- 4, 2009. – 530 p. [8] Jensen, G. (2013). Fire spread modes and performance of fire stops in vented façade constructions – overview and standardization of test methods. MATEC Web of Conferences, 9, 02002, 1st International Seminar for Fire Safety of Facades. Paris, France, November 14–15, 2013. https://doi.org/10.1051/ matecconf/20130902002 [9] ASTM E2912-17 Standard Test Method for Fire Test of Non- Mechanical Fire Dampers Used in Vented Construction, ASTM International, West Conshohocken, PA, 2017, doi: 10.1520/ E2912-17. [10] Shnal T., Pozdieiev S., Yakovchuk R., Nekora O. (2020) Development of a Mathematical Model of Fire Spreading in a Three-Storey Building Under Full-Scale Fire-Response Tests. In: Blikharskyy Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-57340-9_51 [11] Yakovchuk R., Kuzyk A., Skorobagatko T., Yemelyanenko S., Borys O., Dobrostan O. (2020). Computer simulation of fire test parameters façade heat insulating system for fire spread in fire dynamics simulator (FDS). News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences. Volume 4, Number 442 (2020), pp. 35 –44. https://doi.org/10.32014/2020.2518-170X.82 [12] Khasanov I., Molchadsky I., Goltsov K. and Pestritsky A. (2006). Fire hazard of mounted facade systems. Fire Safety, No 5, 36- 47 (in Rus.). [13] Meshalkin, E., Barapebychuk, V. (2006). Fire safety of facade systems. Stroyprofil,No 5 (51), 90-93 (in Rus.). [14] Hou, Yanan & Cheng, Xudong & Liu, Shenyou & Liu, Changcheng & Zhang, Heping. (2015). Experimental Study on upward Flame Spread of Exterior Wall Thermal Insulation Materials. Energy Procedia. 66. 161-164. https://doi.org/10.1016/j. egypro.2015.02.085 [15] Kumm, M., Söderström, J. and A. Lönnermark. (2013). EPS insulated façade fires from a fire and rescue perspective, 1st International Seminar for Fire Safety of Facades, Paris (France). DOI:10.1051/matecconf/20130905003 [16] Hou, Yanan & Cheng, Xudong & Liu, Shenyou & Liu, Changcheng & Zhang, Heping. (2015). Experimental Study on upward Flame Spread of Exterior Wall Thermal Insulation Materials. Energy Procedia. 66. 161-164. https://doi.org/10.1016/j. egypro.2015.02.085 [17] Procedure of fire tests of heat insulating and finishing facade systems for the external walls of buildings and constructions for fire spread, developed by UkrFSRI of the MOE of Ukraine, 2010. (in Ukr.) [18] DSTU B V.1.1-4-98* (1998). Building constructions. Fire resistancer testing methods. General requirements (in Ukr.) [19] Fire Dynamics Simulator. Technical Reference Guide. Volume 1: Mathematical Model / NIST Special Publication 1018-1. Sixth Edition. - 2015. [20] Fire Dynamics Simulator. Technical Reference Guide. Volume 3: Validation / NIST Special Publication 1018-3. Sixth Edition.- 2015. rasad, K.R., Kraemer, R.H., Marsh, N., Nyden, M., Ohlemiller, T., Pitts, W., & Zammarano, M. (2009). NUMERICAL SIMULATION OF FIRE SPREAD ON POLYURETHANE FOAM SLABS | NIST. Fire and Materials. V. Dréan, R. Schillinger, G. Auguin “Fire exposed facades: Numerical modelling of the LEPIR2 testing facility” MATEC Web of Conferences 46 03001 (2016) DOI: 10.1051/matecconf/20164603001 n

RkJQdWJsaXNoZXIy MTcyMTY=